

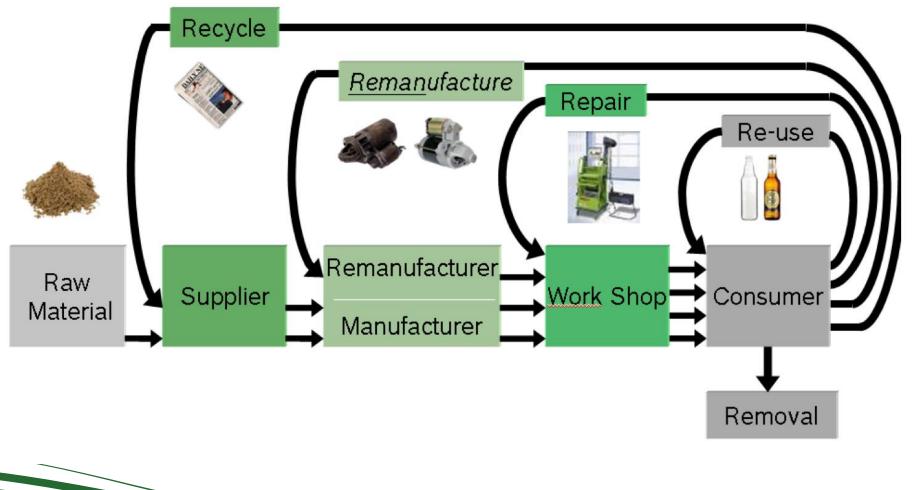
Towards innovative manufacturingcentric circular economy value-chains

Prof. Marcello Colledani: Dipartimento di Meccanica, Politecnico di Milano

Towards Circular Value-chains - Manufacturer Centric vision

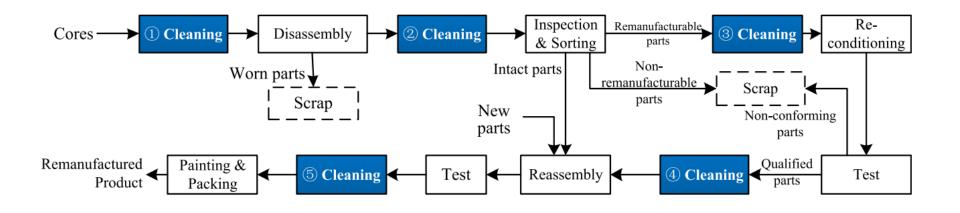
What are the implications for the manufacturing industry in the transition towards new Circular Economy business cases?

WHAT IS REMANUFACTURED?



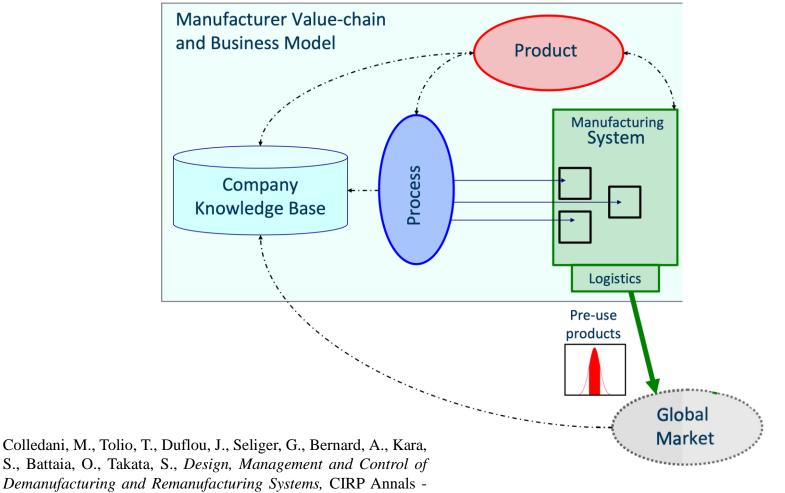
- Remanufactured parts fulfill a fuction which is equivalent to new parts
- Restored from an existing part (called "core")
- Standardized <u>industrial</u> processes
- Fulfilling specific technical specifications
- Same warranty as new part
- Clearly identified as "remanufactured" + mention of remanufacturer
- Remanufactured is different from reused, repaired, rebuilt, refurbished, reworked, reconditioned etc.

(Common definition of ACEA, APRA Europe, CLEPA, FIRM)


WHAT IS REMANUFACTURED?

Source: Remanufacturing Term Guideline, APRA

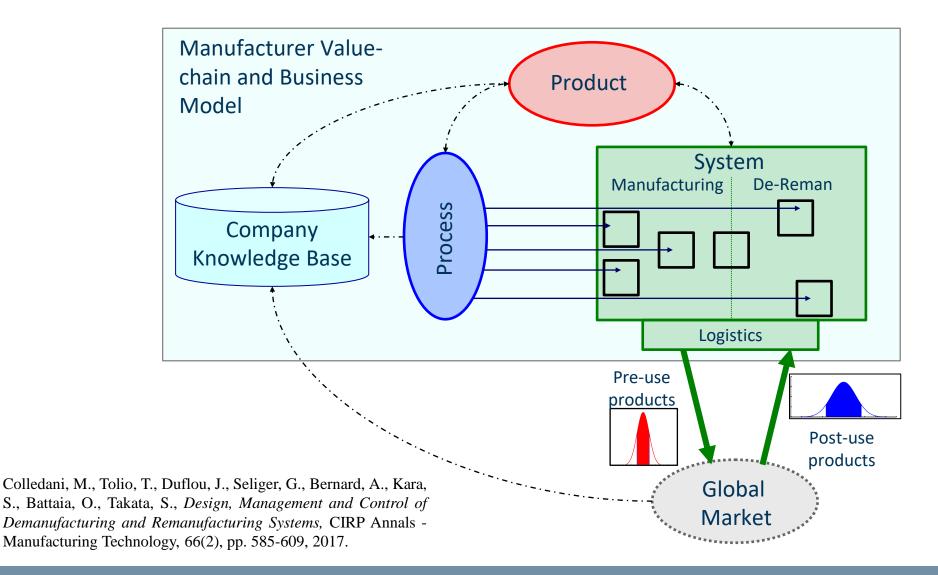
Typical Remanufacturng Process-chain


Cleaning technologies

- Organic solvents cleaning technology
- Jet cleaning technology
- Thermal cleaning technology
- Ultrasonic cleaning technology
- Electrolytic cleaning technology

Regeneration technologies

- Thermal spray
 - Conventional flame spray
 - Wire flame spray
 - Powder flame spray
 - Electric Arc Wire spray
 - Plasma spray
 - High velocity oxy-fuel coating spray (HVOF)
 - Cold spray
- Laser cladding

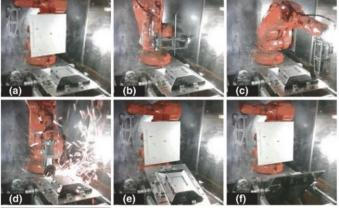

Implications for a manufacturing companies in the transition to remanufacturing business cases

Manufacturing Technology, 66(2), pp. 585-609, 2017.

Manufacturer Centric CE model –

Integrated product, process and system view for the circular economy transition

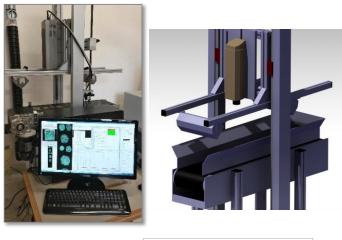
Manufacturer Centric CE model – Cross-disciplinary, multi-level, cross-sectorial innovation

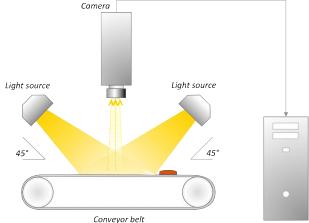


An effective transition to new circular economy businesses in Europe requires a systemic approach and cross-KETs innovations, in traditional and emerging sectors.

Towards smart remanufacturing systems of the future -Enabling Technologies: (semi)-automated disassembly

Emerging Technology: Cognitive Robotics	Integrates a vision system, a knowledge base, and an actuation system			
KODOTICS	Self-learning capabilities			
	Supports human assistance			
Contribution to smart de-and remanufacturing systems	Easy system reconfiguration			
	Process plans adaptation to parts type and condition variability			
	Applicable to small lots			
Current TRL	TRL: 7-8			
Limitations and challenges	 Time consuming during the learning process High installation cost Need skilled operators 			

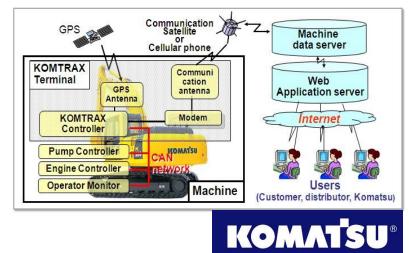



Vongbunyong S, Kara S, Pagnucco M, 2013, Application of Cognitive Robotics in Disassembly of Products" CIRP Annals - Manufacturing Technology 62/1:31–34.

Vonbungyong, S., Kara, S., Pagnucco, M., 2012, Basic Behaviour Control of the Vision-based Cognitive Robotic Disassembly Automation, Journal of Assembly Automation, 33/1:38-56.

Towards smart remanufacturing systems of the future – Enabling Technologies: In-line inspection

Emerging	Detection (signal)			
Technology: HyperSpectral Imaging	Recognition (objects)			
	Classification			
	Material Characterisation			
Contribution to smart de-and remanufacturing systems	On-line material characterization: full material data storage and traceability			
	Enables in-line monitoring and process control by CPSs			
Current TRL	TRL: 9 (few sectors)			
Challenges and limitations	 Algorithms customization Fine particles characterization Detection problems: shadows, specular reflection, edge effect 			

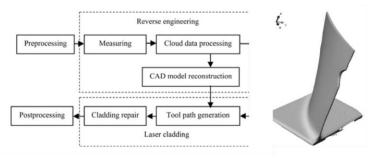

Picón, A., Ghita, O., Bereciartua, A., Echazarra, J., Whelan, P.-F., Iriondo, P.-M., 2012, Real-time hyperspectral processing for automatic nonferrous material sorting, Journal of Electronic Imaging, 21/1.

Picón, A., Ghita, O., Whelan, P.-F., Iriondo, P.-M., 2009, Fuzzy Spectral and Spatial Feature Integration for Classification of Nonferrous Materials in Hyperspectral Data, IEEE Transactions on Industrial Informatics, 5/4:483-494.

Towards smart remanufacturing systems of the future – Enabling Technologies: in-use product monitoring

Enabling Technology: Sensors embedded in products and IoT	Collect data from the product use-phase			
	Provide product related data to the post-use de-and remanufacturing processes.			
Contribution to smart de-and remanufacturing systems	Enables to adapt the process chain based on the information gathered on the product. Pre-process inspection savings.			
Current TRL	TRL: 8-9			
Limitations and challenges	Not all the products can be sensorized. Involvement of the manufacturer.			

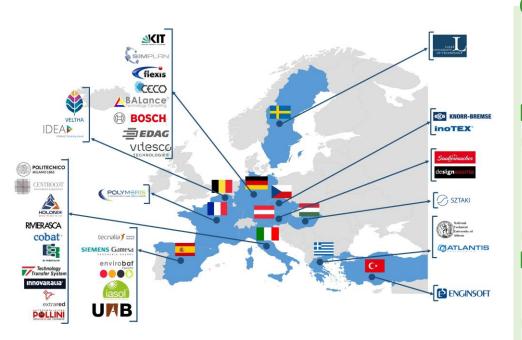
Komatsu system for in-use monitoring and data collection


Bilge, P., Badurdeen, F., Seliger, G., Jawahir, I.-S., 2016, A novel manufacturing architecture for sustainable value creation, Annals of the CIRP, 65/1:455–458. Ilgin, M.-A., Gupta, S.-M. 2011, Performance improvement potential of sensor embedded products in environmental supply chains, Resource, Conservation and Reycling, 6:580- 592.

Towards smart remanufacturing systems of the future -Enabling Technologies: reconditioning

Enabling Technology: Additive	Defect regeneration by additive processes from digital product data		
Manufacturing and hybrid processes.	Applied to large metal parts, typically molds and dies, turbines, or to polymeric small spare parts		
Contribution to smart de-and remanufacturing systems	Flexibility in processing free- form shapes (damaged parts)		
	Ability to produce functional graded materials		
	Suited for parts functionality upgrades (hybrid processes)		
Current TRL	TRL: 7-8		
Limitations and challenges	Limited to high added-value parts. Involvement of the manufacturer Surface roughness limitations		

Gas turbine burner tip repair (Siemens AG 2014)


Aeronautics turbine blades

Navrotsky, 2014, 3D printing at Siemens Power Service, Siemens.

Newman, S., Zhu, A., Dhokia, V., Shokrani, A., 2015, Process planning for additive and subtractive manufacturing technologies, Annals of the CIRP, 64/1:467-470.

Gao, J., Chen, X., Yilmaz, O., Gindy, N. 2008, An integrated adaptive repair solution for complex aerospace components through geometry reconstruction, International Journal of Advanced Manufacturing Technology, 36:1170-1179.

The DigiPrime project

CALL

H2020-DT-ICT-07- 2018-2019

Digital Manufacturing Platforms for Connected Smart Factories

BUDGET

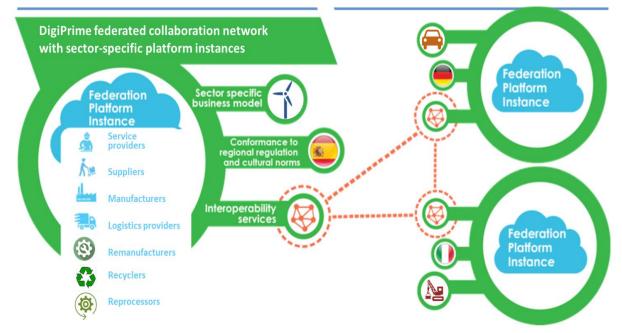
Project costs: *19.257.130,00*€ Funding: *15.963.173,50*€

DURATION

January 2020 – Dec 2024

OBJECTIVE

To develop a new concept of Circular Economy digital platform overcoming current information asymmetry among value-chain stakeholders, in order to unlock new circular business models based on the data-enhanced recovery and re-use of functions and materials from high value-added post-use products with a cross-sectorial approach.


- 36 European organizations from 11 EU states;
- 6 manufacturing sectors;
- > 25 industrial partners, 18 of which are SMEs;
- 8 research centers and universities.

Platform Architecture: concept of federation

The overall architecture level of the DigiPrime platform includes:

DigiPrime

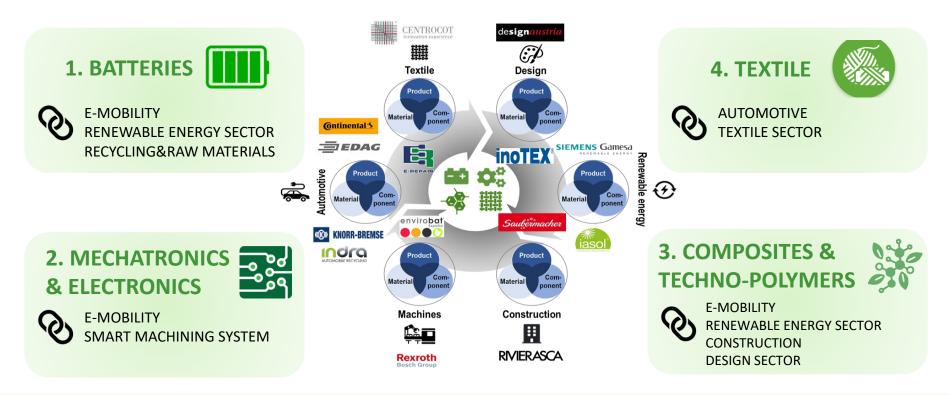
- A **Multi-node federation structure**, replicable on different existing and new sectorial platform instances, which will support the future systematic creation of cross-sectorial circular value-chains.
- A **Semantic data infrastructure,** based on ontological repositories and semantic search, able to manage and standardize the Babel of information coming from heterogeneous nodes.
- A **Data Policy Framework** to ensure privacy, security, authentication and authorization policies to any information shared among registered users.

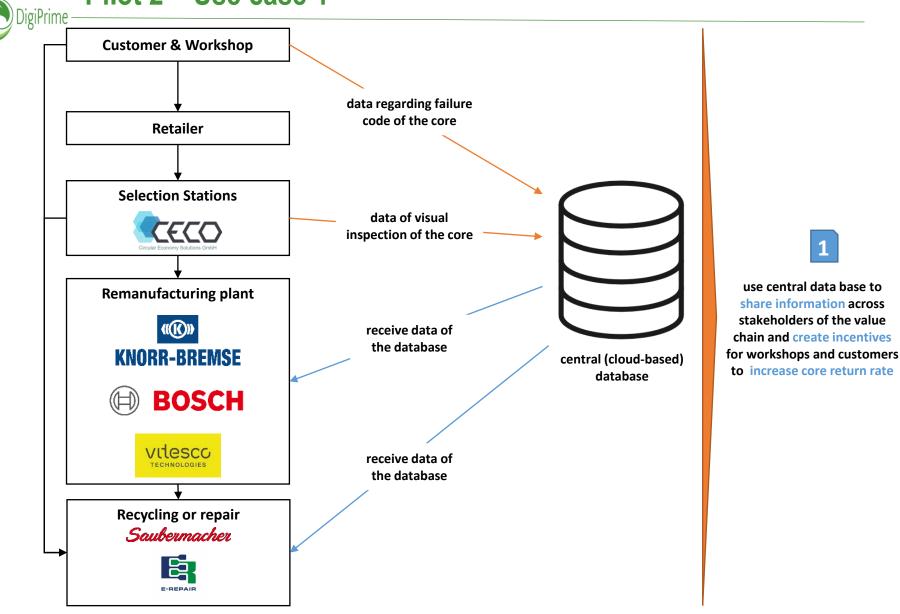
The Blockchain technology will ensure that data cannot be altered, and will keep track of any transaction taking place in the platform.

Value-chain Oriented Services (VCO) and Operational Services (OS).

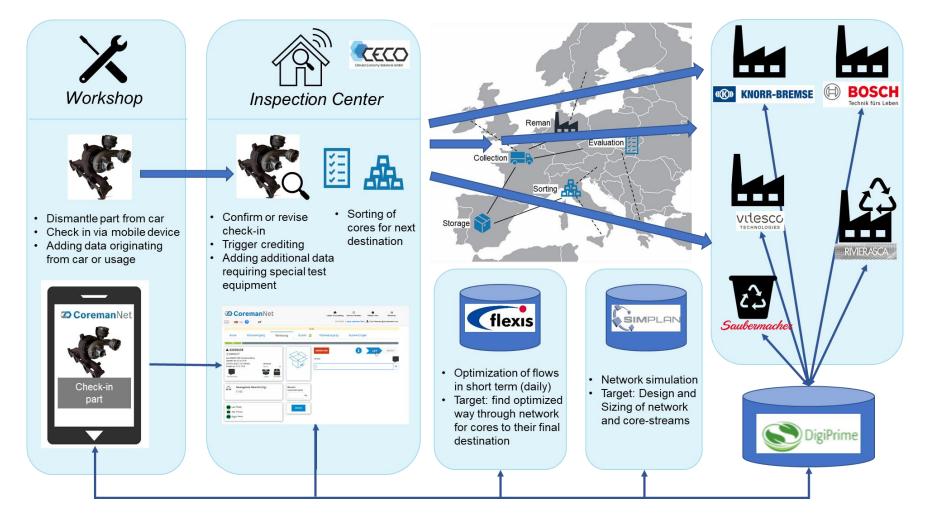
- VCO services are horizontal services that can be made accessible to other nodes of the federation, to offer access to information of interest to stakeholders across sectors.
- **OS** services are vertical services, used by companies internally, mainly to support decision- making aiming at improving the effectiveness and profitability of the circular business processes.

Ł	Software Traditional developer manufactur	Waste er producer Recyclers	Remanufacturers	Processors		ertification Ithority	Consumers			
የየ	Value Chain Value Chain			<u>R</u>		ompany portal	Web			
10	VCO services OS services					~				
APIs	De-Re Manufacturing	Pan-European Open	Product Avatar		Demand ar forecasting	quality				
Federation I/op APIs	Co-creation	Material flow monitoring	Product con predictions	Product conditions predictions		Circular production planning				
	LCA/LCC - digital workspace	Circular innovation hubs	Decision Su	oport System - CE	╡┝────	I testing and	NORk			
	Demand-Supply matching	Barriers and legislation	Digital Twin		Demand and Supply forecasting Circular production planning Material testing and certification repository DATA POIICY FRAME Bata Muthorisation & Data Mngmt					
	Sustainable Value NTWK / reverse logistics				_		ICY FR ation 8			
6	Data Access Layer (IDSA Layer + APIs)									
SEMANTIC INFRASTRUCTURE										
	ONTOLOGY MNG & QUERIES Inference Rules Relational Data Mngmt									
	Organisations Materi	als Products	Processes Le	gislations	IPRs					
	Data Warehouse	Databases	File Shares	Blockchair		Cloud				


The DigiPrime Pilots

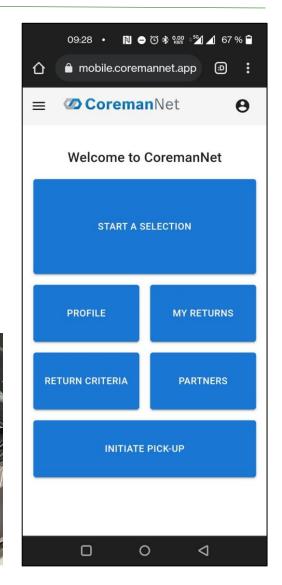

The platform and the related service applications will be **adopted and validated within the DigiPrime cross-sectorial pilots**.

Executing the demonstration experiments for specific use-cases allows to test:


- The interoperability with the company pre-existing ICT infrastructure;
- The continuous interaction with the platform modules and services;
- The generated data to populate the platform for future business cases;
- The industrial feedback for platform maintenance and improvement.

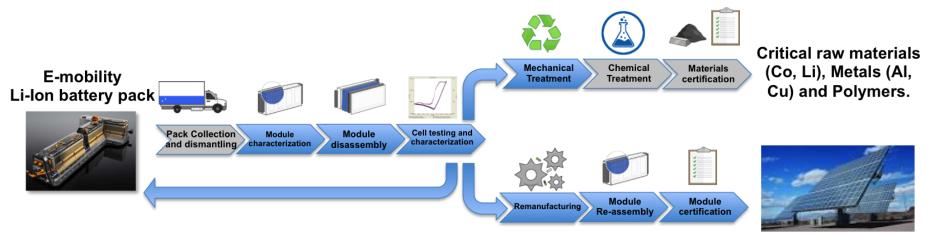
Pilot 2 – Use case 1

Current status


Service Component: Mobile Application

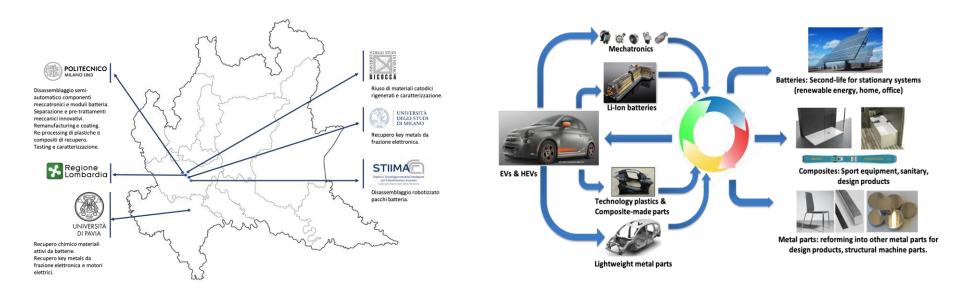
Functional scope of MVP:

- Read-in testing data from OBD-tester-protocols by OCR-technology
- Identify used parts by product-numbers
- Check-in parts for transportation
- Collect data for transfer via platform



Inter-departmental laboratory CIRC-eV

The mission of the CIRC-eV Laboratory is to develop a new concept of **Circular Factory** to support the manufacturing industry in the recovery and reuse of functions and value from post-use Hybrid and Electric Vehicles, boosting the introduction of new circular economy models for sustainable e-mobility.


Characteristics:

- Average life-time 8 years.
- Current cost 150 Euro kWh.
- Residual capacity >80% (24 kWh on average).
- Warranty for manufacturers usually for 5 years (e.g. Tesla, Nissan).

Second-life stationary systems (renewable energy, home, office)

Lombardy Region Initiative: EcoCirc

Lombardy region launched the "Accordo di collaborazione per la realizzazione di un'innovativa infrastruttura pilota regionale di supporto alla transizione verso l'economia circolare" di Regione Lombardia, focused on circular economy solutions for the e-mobility sector.

The agreement involves 5 MEuro of infrastructure co-funding for increasing the capacity of research institutes in Lombardy in view of the realization of a Regional infrastructure for supporting the circular economy transition of the Lombardy Region industrial stakeholders.

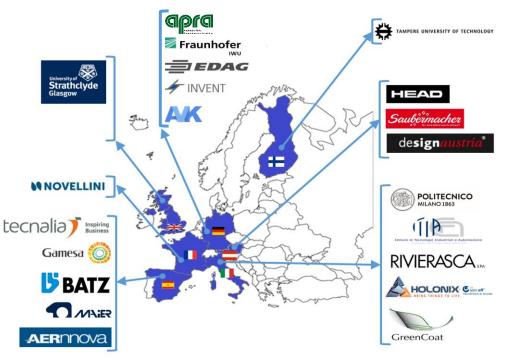
Towards innovative manufacturingcentric circular economy value-chains

Prof. Marcello Colledani: Dipartimento di Meccanica, Politecnico di Milano

Large scale demonstration of new circular economy value-chains based on the reuse of end-of-life fiber reinforced composites.

Topic: Systemic, eco-innovative approaches for the circular economy: large-scale demonstration projects (CIRC-1-2016)

The FiberEUse project aims at integrating in a holistic approach different innovation actions aimed at enhancing the profitability of *composite recycling and reuse in value-added products*.



Duration: 48 months, starting on June 2017.

Consortium: 21 partners, from 7 EU countries.

Coordinator partner: Politecnico di Milano

EC Funding: ca. 10 mln €.

Mechanical recycling of short GFRP and re-use in added-value customized applications, including furniture, sport and creative products. Emerging manufacturing technologies like UV-assisted 3D-printing and metallization by Physical Vapor Deposition will be used.

- Demo-case 1.1: Use of a fraction (at least 40% w/w) of GFRP recyclate in open mould spray applications of GFRP for *sanitary products* (bath tubs, shower trays).
- Demo-case 1.2: Use of a fraction (at least 30% w/w) of GFRP recyclate for prototyping *personalized and creative products* (i.e. creative packaging etc).
- Demo-case 1.3: Use of a fraction (at least 10% w/w) of GFRP recyclate to strengthen PU compounds for the realization of *sport equipment* (e.g. skis).

Examples of output products

FiberFUse

Inspection, repair and remanufacturing for EoL CFRP products in high-tech applications. Adaptive design and manufacturing criteria will be implemented to allow for a complete **circular economy demonstration in the automotive sector**.

Example DC 7: Light Car Space Frame Concept from EDAG

Demo-Case: Body Structure Complete New Approach Task-Leader: EDAG Demo-Case: Internal/Interieur Structure e.g. Rear Seat Backrest Task Leader: INVENT

- Demo-case 3.1:

design and remanufacturing of a CFRP *chassis component*.

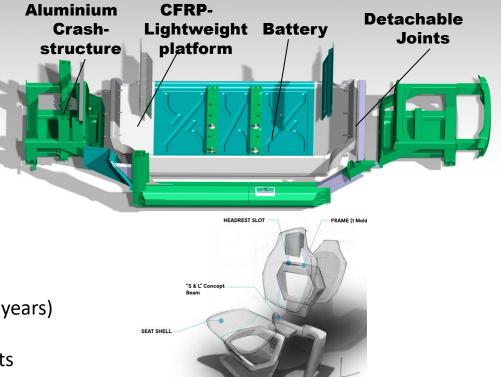
Demo-case 3.2: design and remanufacturing of CFRP body car structure.

Use-case 3: E-vehicle re-design concept

Segment: Compact multi-purpose vehicle (MPV)

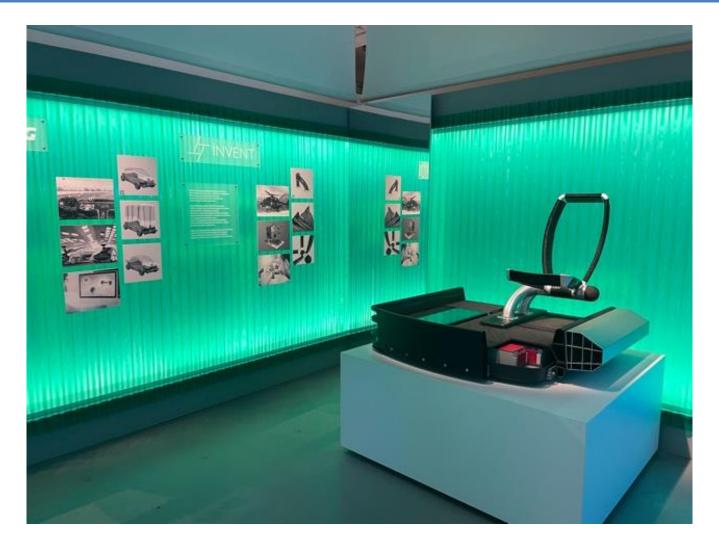
Design and proportions:

- Short hood
- Small overhangs for easy parking
- Large wheelbase for easy entering and leaving the car and for maximization of battery compartment
- Modern panelled design for easy refurbish


Platform features (CFRP & GFRP):

- Light
- Scalable (M, L, XL)
- Symmetrical foundation pursued
- Crash safety for passengers and battery

Requirements:


- Reusability of BiW parts
- Ultimate fatigue life of main body panels (30 years)
- Possibility of non destructive disassembly
- New detachable joining methods for FRP parts

First complete prototype presented at the Milan Design Week in Sept 2021

Overview of the Milan Design Week Installation in Sept 2021

Target objective of the inter-departmental laboratory CIRC-eV

Technical challenges:

- High variability of input product design
- High variability in the conditions of post-use batteries
- Lack of testing criteria and standard certification procedures:
 - SOH and residual life-time;
 - Acceptability for re-use;
 - Performance regenerated modules.
- Safety and egonomy requirements for humans.
- High quality and efficiency standards.

Requirements:

Flexible and adaptable technologies

Availability of information from producers and in the use phase

Standard testing procedures

Decision Support System for performance-driven re-assembly

Human-centric and safe-bydesign systems

Automation, traceability and repeatibility

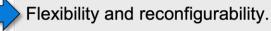
Need to develop a new generation of Safe and Smart De-and Remanufacturing systems

Manufacturer Centric CE model – Technical Challenges and Requirements

Short life cycle of products and high product variety.

High variability in the conditions of post-consumer parts.

Pressure on costs and efficiency.


Poor information about return products.

High fluctuation in materials' value.

Increasing product complexity.

Increasing quality requirements on recovered components/materials.

Increasing attention on safety and ergonomics.

Variability of process sequences and processing times.

Need for hybrid automation solutions.

- Need for ICT solutions and big data management systems.
- Need for in-line part and materials inspections.
- Emphasis on business models, inventory and production planning.
 - Need for knowledge based tools.
 - Involvement of the manufacturer.
- Need for automation, repeatability of the processes and quality assurance.
 - Need for human-centric design of disassembly/sorting workstations.

In line with these requirements, methodologies, tools and enabling technologies for the next generation smart de-and remanufacturing systems of the future are needed.

POLITECNICO MILANO 1863

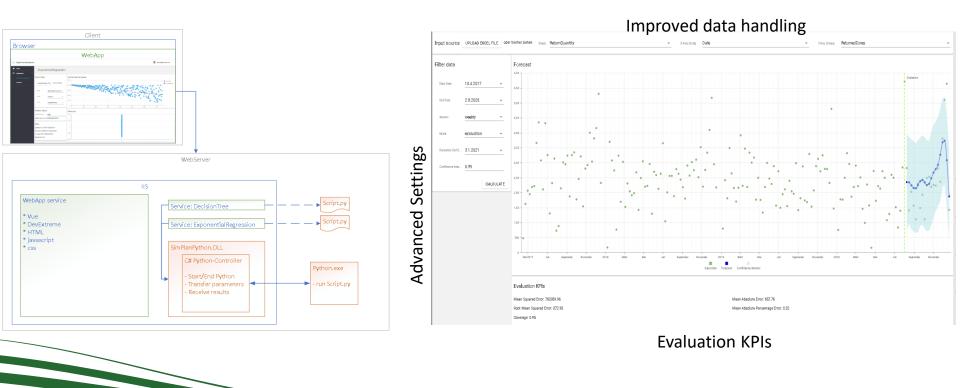
Requirements

and

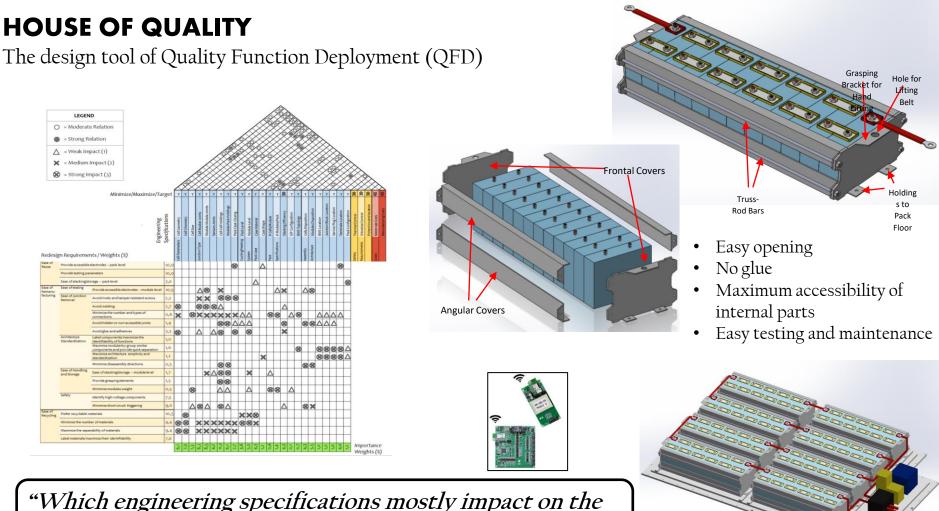
Challenges

APRA MAIN POSITIONING

THE VOICE OF REMANUFACTURING SINCE 1941


APRA IS THE ONLY GLOBAL ASSOCIATION THAT REPRESENTS THE WHOLE AUTOMOTIVE REMANUFACTURING INDUSTRY

We are representing: Remanufacturers, Component Manufacturers, Car Manufacturers, Core Dealers, Wholesalers, Scientific Research Institutions, Consultants & Services



OS Demand and Supply Forecast

Service application for forecasting the demand for remanufactured products and the supply of post-products in order to support de-and remanufacturers in medium-term production planning, long-term capacity planning activities, assessment of circular business cases on new products and second-life material/product pricing.

Re-design of battery packs and modules for easier disassembly and re-use

"Which engineering specifications mostly impact on the Redesign Requirements?"

Gentilini, L. Mossali, E., Merati, G, Colledani, M., *Methodology and Application of Electric Vehicles Battery Packs Redesign for Circular Economy*, 30th CIRP Design Conference, 5-8 May 2020, South Africa, Procedia CIRP, Volume 91, 2020, Pages 747-751.