
Le risorse di Horizon Europe per il remanufacturing

Piacenza (Consorzio MUSP), 22 settembre 2022 – Paolo Albertelli – Politecnico di Milano paolo.albertelli@polimi.it

Agenda

- Remanufacturing introduction
- Horizon Europe framework
- Some relevant calls
- Trends and keywords
- Remanufacturing and other key enabling technologies
- Examples: the cutting tool test cases.

Introduction

POLITECNICO MILANO 1863

Introduction

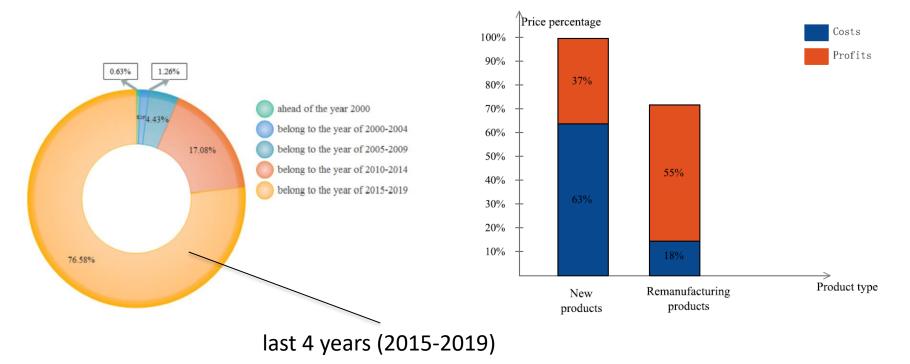
Air pollutant	Emissions	Water pollutant	Emissions
Dust	1.97	Waste water	20510
SO ₂	6.27	Suspended solids	0.31
НСНО	0.01	Oil, grease	0.12
CO	1.45	BOD ₅	0.02
NO _x	2.10	COD _{cr}	0.06
CH ₄	0.11	Manganese	0.02
CO ₂	996.5	Iron	0.53
NMHC	0.02	Copper	0.01

Table 7

Environmental pollution during engine remanufacturing (Kg/Per) (Mao et al., 2009).

Emissions	Quantity	Emissions	Quantity	Emissions	Quantity
Dust	0.09	СО	0.07	SO ₂	0.126
NO _x	0.028	CO ₂	7.51	BOD	0.0042
Suspended solids	0.007	Hydrocarbon	0.0028	Heavy metal	0.0034

Environmental Impact (engine manufacturing)


- NO_x: 2.10 Vs 0.028 Kg/per
- CO₂: 996.5 Vs 7.51 Kg/per

Energy (engine manufacturing)

• Saved Energy: 4/5 o the overall energy

Paolo Albertelli

Introduction

Scientific and research activities

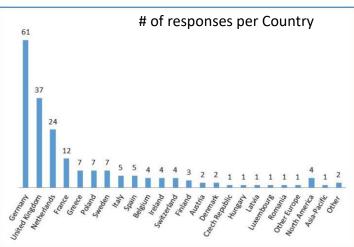
Industrial perspective: Costs and Profits

Xugang Zhang, Mingyue Zhang, Hua Zhang, Zhigang Jiang, Conghu Liu, Wei Cai, A review on energy, environment and economic assessment in remanufacturing based on life cycle assessment method, Journal of Cleaner Production, Volume 255, 2020,

Paolo Albertelli

Remanufacturing challenges

Potentialities


- + material saving
- + energy saving
- + CO₂ saving
- + reduced costs
- + lower prices
- + higher profits

Challenges

- Lack of Data about the Condition of the Returned Product
- Complex disassembly processes
- Lack of a Methodology for Deciding the Best End-of-Life Scenario
- Investment analysis
- Supply chain
- Remanufacturing processes (agile, etc.)

Industry 4.0 – digitalization and other Key Enabling Technologies: Artificial Intelligence

Sectors	Turnover (€bn)	Firms	Employm't ('000)	Core ² ('000)	Intensity
Aerospace	12.4	1,000	71	5,160	11.5%
Automotive	7.4	2,363	43	27,286	1.1%
EEE	3.1	2,502	28	87,925	1.1%
Furniture	0.3	147	4	2,173	0.4%
HDOR	4.1	581	31	7,390	2.9%
Machinery	1.0	513	6	1,010	0.7%
Marine	0.1	7	1	83	0.3%
Medical equipment	1.0	60	7	1,005	2.8%
Rail	0.3	30	3	374	1.1%
Total	29.8	7,204	192	132,405	1.9%

		Estimated savings		
	Sectors	Materials ('000 t)	CO ₂ e ('000 t)	
	Aerospace	136	356	
	Automotive	587	2,099	
-5	EEE	299	1,070	
	Furniture	16	129	
	Heavy duty and off road equipment	42	83	
→	Machinery	76	131	
	Marine	663	2,724	
	Medical equipment	192	734	
	Rail	107	91	
	Total	2,260	8,255	

Source: ERN European Market Study Horizon 2020

POLITECNICO MILANO 1863

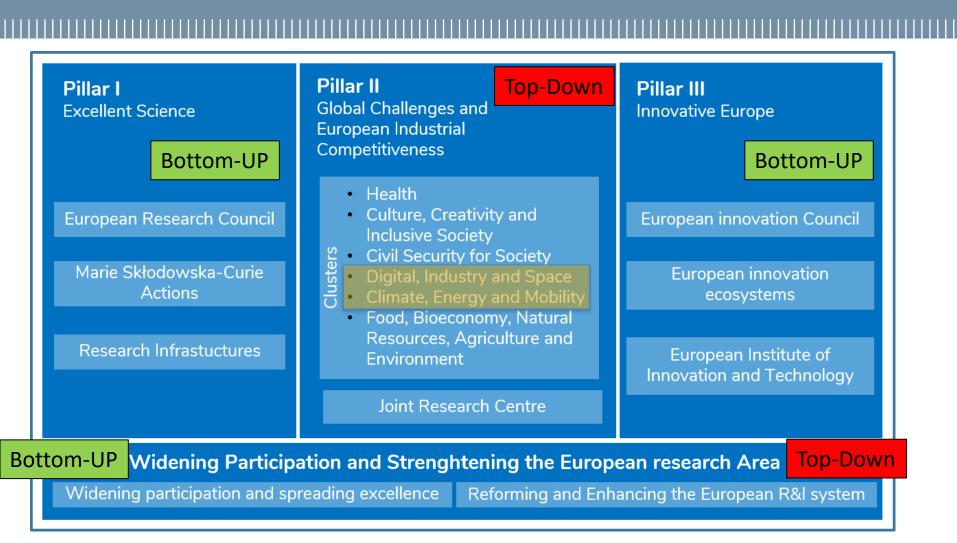
Basic Case (Hp: remanufacturing sectors growing under the following conditions)

- Low (0.5% p.a.) Heavy duty, Machinery and Marine
- Steady (3% p.a.) Aereospace, Automotive, Rail
- High (5% p.a.) EEE, Furniture, Medical Equipment

Stretch (with appropriate policies and promotional activities)

- Low (25% p.a.) Heavy duty, Machinery and Marine
- Steady (50% p.a.) Aereospace, Automotive, Rail
- High (100% p.a.) EEE, Furniture, Medical Equipment

Transformation (characterized by investment, strong policy support, large scale propotion)


- Low (50% p.a.) Heavy duty, Machinery and Marine
- Steady (100% p.a.) Aereospace, Automotive, Rail
- High (200% p.a.) EEE, Furniture, Medical Equipment

Source: ERN European Market Study Horizon 2020

EU fundings – Horizon Europe structure

Paolo Albertelli

Actions in Pillar II

- Research and Innovation Action (RIA): to establish new knowledge or explore the feasibility of new technologies
- Innovation Action (IA): produce plans or design improved process and product
- Coordination and Support Action (CSA): Contribute to the objective of Horizon EU (standardisation, dissemination,...)

EU fundings - structure

Pilar	II - Global Challenges and Industrial Competitiveness HEU	56%, €53.8 bn
	Health	8%, €7.9 bn
S	Inclusive and Creative Society	2%, €2.2 bn
Clusters	Secure Society	2%, €1.8 bn
Ins	Digital, Industry and Space	16%, €15.5 bn
C	Climate energy and mobility	16%, €15.2 bn
	Food, Natural Resources and Agriculture	9%, €8.9 bn
	Joint Research Centers	2%, €1.9 bn

	Industrial Leadership H2020	22%, €17 bn	
-	ICT		
LEIT	Space	17.6%, €13.6 bn	
	NMBP		
	Access to Risk Finance	3.6%, €2.8 bn	
Innovation in SMEs		0.7%, €0.6 bn	

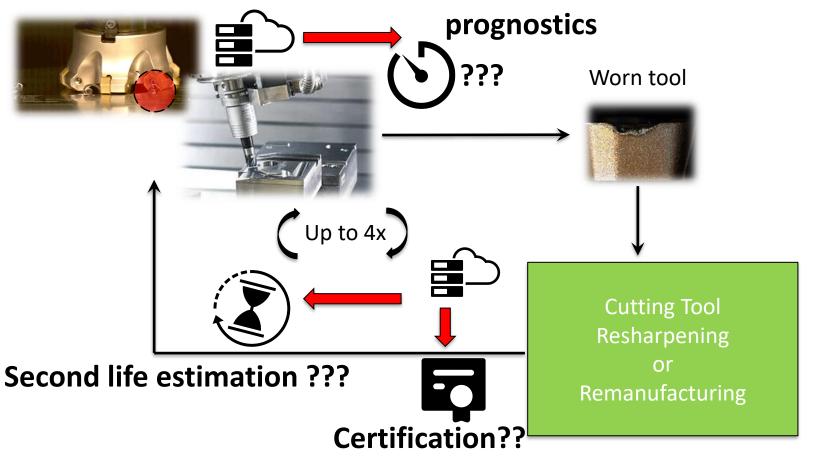
Societal Challenges H2020	38%, €29.7bn
Health	9.7%, €7.5bn
Agrifood	5%, €3.9bn
Energy	7.6%, €5.9bn
Transport	8%, €6.3bn
Climate	4%, €3.1bn
Inclusive Societies	1.6%, €1.3bn
Security	2.2%, €1.7bn

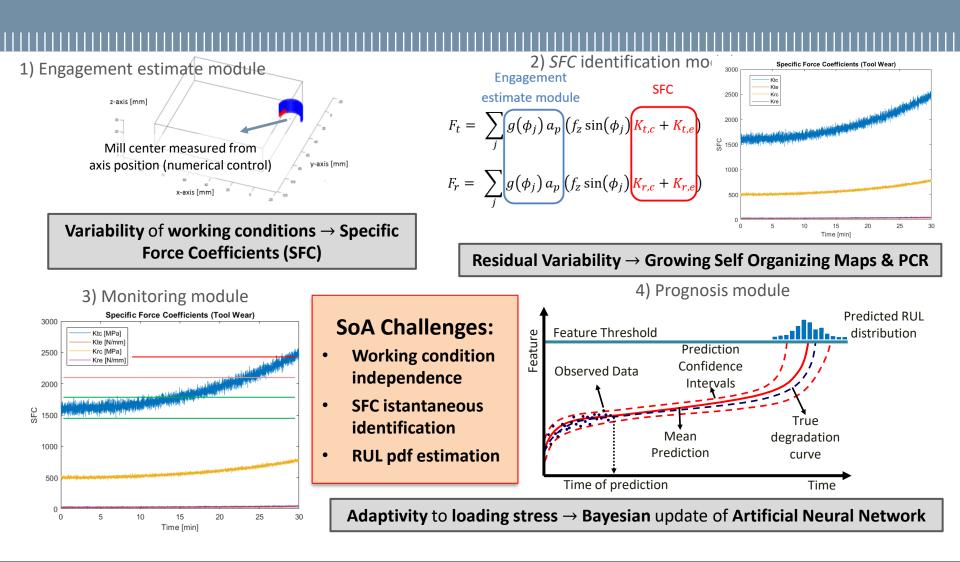
Horizon 2020 Related Pillars Budget: €43.5 br

Horizon Europe Budget: €95.5 bn

HORIZON-CL4-2022-TWIN-TRANSITION-01-07: Digital tools to support the engineering of a Circular Economy

- Provide a range of support solutions and innovative digital tools for engineers, technicians and operators on the factory floor, in order to build agile, sustainable and responsive production environment and supply chains, with specific focus on areas such as material saving, repair, refurbishing, remanufacturing, recycling, and reuse of products and components;
- Reduction of the dependency from imported raw materials or harmful materials for the European manufacturing sector (e.g. by material consumption reduction, material substitution and use of secondary raw materials);
- Define specifications and standards for data, products, and/or business processes, that can be agreed and commonly used by many industrial actors and across different industry sectors; and facilitate industry agreements on circularity and sustainability through increased data exchange among value chain actors and enable the development of new types of businesses;
- Reduce the skills and knowledge gap for the actors involved.

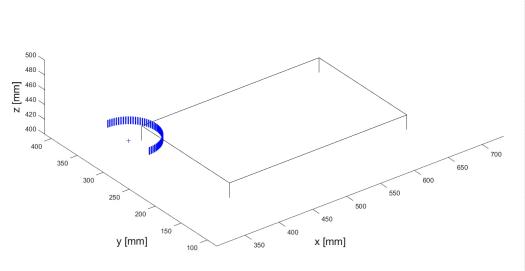

RemaNet project

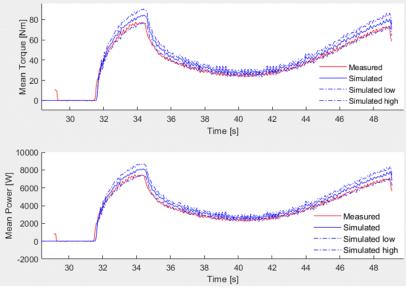

Other potential keywords/topics:

- decentralised manufacturing
- improvements in small-series, customised production costs in decentralised environments
- Zero-defect manufacturing
- Improve Flexible production capabilities
- Promote circular economy by closing the material and energy cycles in cities
- Use of innovative modelling and simulation software that allow real time process control and manufacture monitoring
- Predictive and data analytics for processing huge amount of data achieving a much deeper understanding of customer needs

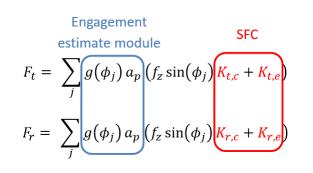
Examples

Remanufacturing of cutting Tools

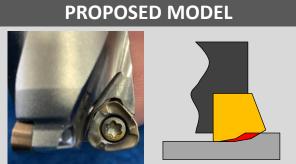



Paolo Albertelli

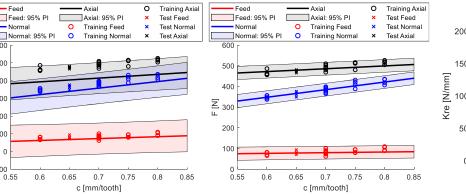
Mill engagement estimation

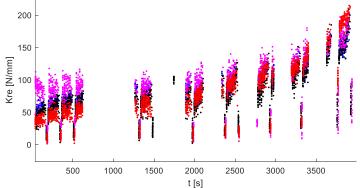


FUTURE WORKS:


- Adaptive estimation of engagement

POLITECNICO MILANO 1863





Mean Identification

Instantaneous Identification

POLITECNICO MILANO 1863

Paolo Albertelli

600

500

400

100

-100

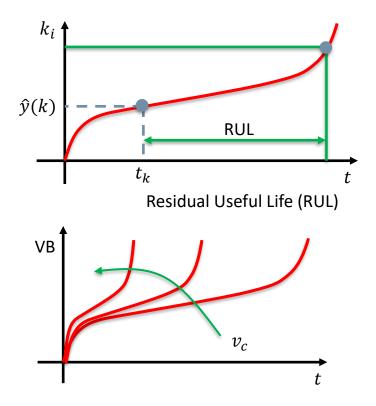
0

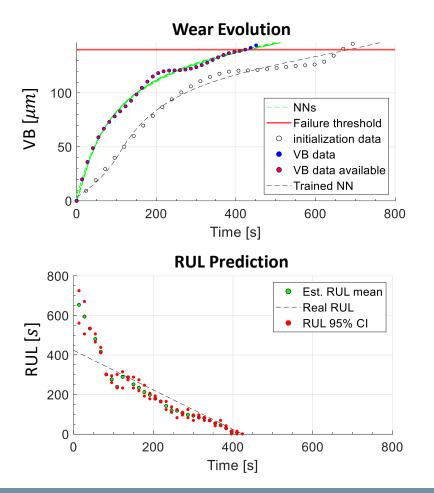
Z ³⁰⁰ L ₂₀₀

a) Principal Component Regression + Self-starting Control Charts

Paolo Albertelli

Principal Components Regression


- Removes variability due to multicollinearity
- Performs Principal Components analysis on regressors
- Regression coefficients can be scaled back to the original meaning (keeping the physical information)


Self-starting Tabular Cusum Control Chart

- Self-starting → design phase not needed. Built on ongoing observations
- Tabular Cusum → monitoring cumulative small deviations from the expected process mean

- Different cutting speeds
- Different lubricating conditions
- Different materials

POLITECNICO MILANO 1863

Thanks for the attention Contacts: Paolo Albertelli paolo.albertelli@polimi.it

Paolo Albertelli